現役教員として数学を教えている「さん」と申します。
「人より勉強に時間がかかる」と感じていませんか?
私の学校にも、同じ悩みを抱えて苦しんでる生徒がたくさんいます。
• 「教科書や参考書の内容がわからなくて、読むのに時間がかかる」
• 「解答の意味が理解できず、勉強が進まない」
教科書や参考書の内容を理解するには、「自分なりに噛み砕いて考える力」が必要です。
でも大丈夫!
このサイトでは、私が受けた質問や、つまずきポイントをもとに、わかりやすく解説していきます。
意味から理解し、噛み砕き方をマスターしましょう!!
2次関数
2次関数01:関数の値、定義域・値域と最大・最小

関数の値、定義域・値域と最大・最小
関数
\(x\)の値を定めると\(y\)の値がただ1つ定まるとき、\(y\)は\(x\)の関数であるという。\(y\)が\(x\)の関数であることを\(y=f(x)\)と表すことが多い。関数\(y=f(x)\)において、\(x=a\)のときの\(y\)の値を\(f(a)\)と表す。
座標平面
平面を直交する数直線で4つの象限に分けたもの。右上から反時計回りに第1象限、第2象限、第3象限、第4象限という。なお、座標軸上はどの象限でもない。
定義域
関数\(y=f(x)\)において変数\(x\)がとりうる値の範囲。
値域
\(x\)が定義域内のすべての値をとるとき、\(f(x)\)がとりうる値の範囲。
最大・最小
グラフと定義域を描き、視覚的に考える。



コメント